Hand Feature Learning For Hand Shape Recognition

Sign Language is the main form of communication of the Deaf Community.


poster
Poster

Sign Language is the main form of communication of the Deaf Community. The hearing impaired people can communicate between each other, but they are unable to have a proper relation with hearing population. Lack of sign language knowledge in our society and low number of sign language translators produce the need for automatized sign language recognition systems that would understand sign languages. 

This project focuses on hand shape classification using static hand images cropped from sign language videos. The main objective is to extract hand shape features from 2D hand images in order to classify static signs of the sign language. I used convolutional autoencoder for feature extraction and SVM for the classification for this purpose.


Advisors

Lale Akarun